A wee server for the home

Sudarshan S. Chawathe
2018-03-24

Home server: what? why?

- Something to provide small-scale local services
- Printing from local network
- File server
- Easily and privately share files with household
- Destination for backups of other computers, photos, videos
- Music server

- Control playback on attached home audio system
- Serve music to play elsewhere
- Stream music from elsewhere

- Web server: Photo and video galleries

- Personal XMPP/Jabber chat server

- Landing spot for remote login
- Wake up other computers using wake-on-LAN.

- Email server, .
- Under personal control

- Free (libre)

- Independent of non-local network
- availability, latency, bandwidth

Why a wee server?

- Low power consumption
- Always-on is a nice if it only uses a few watts.
- Low heat dissipation
- Compact
- easily stash on a shelf, behind other equipment, ...

- Low cost
- ~100 USD.

- Hardware options that are more open
- than mainstream servers

- Fun

- low-risk hardware experimentation: flashing, etc.
- easy hardware interfacing

- blinking lights, motors, sensors, ...

for the home

This presentation

- For, and by, a non-expert
- Not very novel or unique; see FreedomBoX, ...
- Expert advice welcome

- Brief how-to and invitation

- Buy, build, configure a wee home server

- Use, learn, and contribute to libre software
- One person’s choices and experience
- not comprehensive, nor ideal

- but actually used, long term
- Small technical excursions (still non-expert)
- udev rules
- randomness

- Sharing
- experiences with home servers
- suggestions, concerns, future directions

Hardware choices

- many options
- examples, not exhaustive lists
- what | chose and why

S.S. Chawathe, A r for the home

Hardware: Main server/single-board computer

- Desired
- Open/libre hardware
- Low power consumption (and heat ouput)
- Low cost
- Sufficient compute resources
- CPU, RAM, display, network, USB, ...
- for? priorities? video? disk-network throughput? ...
- Contenders: non-exhaustive
. BeagleBone Black (BBB) [my choice]
- easily available in US (+ from my favorite retailer)
- Debian GNU/Linux pre-installed option
- very competitive cost: ~ 55 USD
lots of ports, accessible hardware pins (for other hardware fun)
- Cubieboard
- Olimex A20
- Tempting but no-go:
- Raspberry Pi ~ 35 USD
- octa-core “TV boxes” ~ 80 USD

for the home

Hardware: Essential accoutrements

- Case

- Not just vanity

- Consider byzantine mobile hardware fault injectors (cats).
+ Good power supply

- Don't skimp; power “brown-outs” will cause much pain.
- USB hub(s)

- powered better though add clutter.

- need to separate hi- and lower-speed devices?
- Cables

- (micro-)USB

- Ethernet (Cat 5e, 6)

- (?) (micro-)HDMI to HDMI/DVI/VGA

- (?) Keyboard, mouse

r for the home

Hardware: Peripherals

- Main (OS, etc.) storage: small, fast disk.
- Can use on-board 4 GB flash in BBB.

- File-server: external USB disk

- “portable”: single attachment, smaller, usually quieter, cooler,
lower power draw.

- or “desktop”: slightly lower cost, no power drain on USB, larger,
noisier, warmer, bit more clutter.

- Print server: (existing?) USB or network printer.
- USB seems more predictable.

- Music server (to home audio): USB sound card.
- digital audio output is nice.
- generic CM106-based one seems fine: not audiophile
- BBB can do HDMI audio (untested)

r for the home

BeagleBone Black (BBB)

]
=
e
o
=]
o
5
o

ELERICED

15

5

BeagleBone Black specs

- From https://beagleboard.org/black

+ Processor: AM335x 1GHz ARM Cortex-A8
+ 512MB DDR3 RAM
- 4GB 8-bit eMMC on-board flash storage
- 3D graphics accelerator
- NEON floating-point accelerator
- 2x PRU 32-bit microcontrollers

- Connectivity
- USB client for power & communications
- USB host
- Ethernet
- HDMI
- 2X 46 pin headers

r for the home

https://beagleboard.org/black

Setting up a wee server using BBB

- what | did (why)
- what | learned
- did it work?

- was it fun?

for the home

Assemble hardware

- BeagleBoard Black Rev C.
- Element 14 edition: Debian (Jessie, c. late 2017) preinstalled.
- We'll update to Debian Stretch right away...

- Snap fit case

- leave top off for now, to access boot button
- Connect USB cable to gadget port.

- Don't plug in yet
- Separate (barrel connector) power supply

- Don't power up yet

r for the home

Prepare micro-SD card with firmware update

- Instructions from https://beagleboard.org/getting-started
- Get bone-debian-9.3-iot-armhf-*-%-%-4gbh.img.xz
- Checksum
- Create file sha5sums with checksum from above site:
33fc557f32005c811bd449a59264dabb4sadbseadf87aleefaastl3aeb651c7f33d1
bone-debian-9.3-iot-armhf-2018-03-05-4gb.img.xz
- sha256sum -c sha256sums
- Write image to spare micro-SD card:
- Previous contents obliterated
xzcat bone-debian-9.3-iot-armhf-2018-03-05-4gb.img.xz | dd
of=/dev/F00
- Or with some visualization

pv -cN rd < bone-debian-9.3-iot-armhf-2018-03-05-4gb.img.xz | \
xzcat | pv -cN xzcat | dd of=/dev/F00

for the home

https://beagleboard.org/getting-started

Edit firmware on microSD card

- In order to flash BBB's eMMC storage
- This feature not turned on by default

- Mount just-written microSD card on host computer

mount /dev/F001 /mnt/t

- Edit /mnt/t/boot/uEnv.txt carefully:
- Uncomment (remove the #-prefix) line that has:

cmdline=init=/opt/scripts/tools/eMMC/init-eMMC-flasher-v3.sh

- unmount and remove microSD card

umount /mnt/t

or the home

Update firmware

- Insert prepared micro-SD card into BBB's slot
- Prepare to power the board using its barrel-connector and
separate power source
- notvia USB, since current requirements during flashing may
exceed USB limits
- (true?—good advice nevertheless)
- Get BBB to boot from microSD

- Normally, BBB boots from eMMC
- Was oddly hard to find how:

From https://elinux.org/Beagleboard:Updating The Software

- Hold switch S2 (Boot Switch, [diagonally across from barrel conn.])
down by pressing on it and holding it while plugging in the power
cable.

- Continue to hold the button until the first User LED comes on.

- The board will start flashing the eMMC and the LEDs will flash to
show activity. It will take about 45 minutes to flash the board.

- It took only about 10 minutes.
- Can also flash eMMC from BBB command-line after boot.

- untested

https://elinux.org/Beagleboard:Updating_The_Software

Connect BBB as USB gadget

- No need for the barrel power connector now.

- Plug host end of USB cable to setup computer
- Three results (plus blinking lights):
- USB disk /dev/sdb or similar
- with 17 MB vfat partition /dev/sdb1 named “BEAGLEBONE”
- Serial port terminal on /dev/ttyACMO or similar
- working user-id needs dialout group membership for permissions
- Ethernet (over USB) device: eth1 or similar
- permissions via Gnome/network-manager, ...?

- But, didn’t quite work as above for me

or the home

Browse BBB on-board docs

- Got BEAGLEBONE partition mounted.
- Can browse files, view HTML ones in browser, etc.

Index of file:///media/chaw/BEAGLEBONE/

4> Up to higher level directory

Name

B app

Docs

7 Drivers

|Z) LICENSE.txt
File: README.htm
[7] README.md
File: START.htm
File: autorun.inf
[scripts

Size

41 KB
31KB
1KB
31KB
1KB

Last Modified

05/25/2017
05/25/2017
05/25/2017
05/25/2017
05/25/2017
05/25/2017
05/25/2017
05/25/2017
05/25/2017

05:16:32 PM
05:16:32 PM
05:16:32 PM
05:16:32 PM
05:16:32 PM
05:16:32 PM
05:16:32 PM
05:16:32 PM
05:16:32 PM

On-board BBB HTML docs

Linux mkudevrule sh Driver installation isn't required, but you might find a few udev rules helpful
Note:A Additional FTDI USB to seriallJTAG information and drivers are available from www.ftdichip.com/Dri
VCP.htm .

Note:A Additional USE to virtual Ethernet information and drivers are available from www.linux-usb orc
m/haorndis é9.

Using either Chrome & or Firefox @@ (Internet Explorer will NOT work), browse to the web server running on y!
will load a presentation showing you the capabilities of the board. Use the arrow keys on your keyboard to nal
presentation.

gadg

» Click here to launch: b

p/f192.168.7.2 &
Older software images require you to EJECT the BEAGLE_BONE drive to start the network. With the latest software image, that steps
required.

Install udev rules using script

- What does mkudevrule.sh do?

cat > /etc/udev/rules.d/73-beaglebone.rules <<EOF

ACTION=="add", SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_interface", \
ATTRS{idVendor}=="0403", ATTRS{idProduct}=="a6d0", \
DRIVER=="", RUN+="/sbin/modprobe -b ftdi_sio"

ACTION=="add", SUBSYSTEM=="drivers", \
ENV{DEVPATH}=="/bus/usb-serial/drivers/ftdi_sio", \
ATTR{new_id}="0403_,a6d0"

ACTION=="add", KERNEL=="ttyUSB*", \
ATTRS{interface}=="BeagleBone", \
ATTRS{bInterfaceNumber}=="00", \
SYMLINK+="beaglebone-jtag"

ACTION=="add", KERNEL=="ttyUSB=", \
ATTRS{interface}=="BeagleBone", \
ATTRS{bInterfaceNumber}=="01", \
SYMLINK+="beaglebone-serial"
EOF

sudo udevadm control --reload-rules

Try Ethernet-over-USB to BBB

- Gnome/NetworkManager tries to bring up eth1 but stalls at
“Connecting..”

- Peekin /var/log/syslog

dhclient[22752]: DHCPDISCOVER on ethl to 255.255.255.255 port 67
interval 13

dhclient[22752]: DHCPDISCOVER on ethl to 255.255.255.255 port 67
interval 21

dhclient[22752]: DHCPDISCOVER on ethl to 255.255.255.255 port 67
interval 17

NetworkManager[27515]: <warn> [1521786722.8343] dhcps4 (ethl):
request timed out

- Try manual ethl setup with address 192.168.7.1

+ No response to HTTP request to 192.168.7.2
- No response to ping either.

for the home

Try serial port (USB) connection to BBB

- Noticed syslog messages indicating new serial port
/dev/ttyACMO
- Try getting serial console.
- minicom -s
- Port /dev/ttyACMO, 115200 baud, 8N1
- no responses

r for the home

Try console on HDMI display port?

- Another way to get to console:
- connect monitor using micro-HDMI
- and USB keyboard, mouse
- But | was wanted the other method to work...

- It all seemed to be set up so nicely.
- Must be something small that's awry.
- [This ate up a lot of time!]

r for the home

- Lsusb
Bus 001 Device 015: ID 1d6b:0104 Linux Foundation Multifunction
Composite Gadget
- But mkudevrule.sh has
ATTRS{idVendor}=="0403", ATTRS{idProduct}=="a6do",

- Fix above in installed rules:
/etc/udev/rules.d/73-beaglebone.rules
- Some sources on the Web suggesting ModemManager may be
the culprit.
- Could try uninstalling it
- Nicer to have it ignore the BBB by adding udev rule:

ATTRS{idVendor}=="1d6b", ATTRS{idProduct}=="0104",
ENV{ID_MM_DEVICE_IGNORE}="1"

- Unplug-replug BBB and...

for the home

BBB communication success

- Web server at 192.168.7.2.
- Serves set-up docs (same as BEAGLEBONE partition)
- Interaction with BBB using live BoneScript

BoneScript interactive guide
BoneScript is a JavaScript library to simplify learning |
Linux. This web page is able to interact with your boai

var b = require('bonescript');
b.pinMode ("USRO", b.OUTPUT);
b.pinMode ("USR1", b.OUTPUT);
b.pinMode ("USR2", b.OUTPUT);
b.pinMode ("USR3", b.OUTPUT);
b.digitalWrite ('USRO', b.HIGH);
b.digitalwrite('USRL', b.HIGH):
b.digitalWrite('USR2', b.HIGH);
b.digitalWrite ('USR3', b.HIGH);
setTimeout(restore, 2000);

HODO-OUWUsWwiH

I»—-»—n

- Serial console on /dev/ttyACMO
- Login prompt states username and password.
- Log in and change password

- Now we have a mostly standard Debian setup; smooth sailing.

or ti

- Connect “portable” USB disk (or other choice)
- Check device assignment.
- /var/log/syslog
- Verify size
blockdev --getsize64 /dev/sda

- Mount to check manufacturer-provided stuff
fdisk -1 /dev/sda
mkdir /mnt/t
mount /dev/sdal /mnt/t
1s -1R /mnt/t
umount /mnt/t
- Check SMART data
smartctl -d sat -a /dev/sda
smartctl -t short -a /dev/sda
- Test a bit (obliterate contents of /dev/FOO)
badblocks -vsw /dev/F0O0

- takes a long, long time for large devices

er for the home

Prepare for filesystem

- encrypted(?)

- write random data (obliterating contents again)
dd if=/dev/urandom of=/dev/FO0 bs=4096
DDPID=$!

- to check progress
kill -s USR1 $DDPID

- Alternatives
- /dev/random? (no) opessl? (maybe)
- later

r for the home

Create encrypted partition and filesystem

- cryptsetup (obliterate /dev/FOO again)

cryptsetup luksFormat /dev/F001
cryptsetup luksOpen /dev/FO01 BAR
1s -1 /dev/mapper/BAR

.+ ext4
mkfs.exts4 -L BAZ /dev/mapper/BAR
mount /dev/mapper/BAR /mnt/t

- before disconnecting

umount /mnt/t
mount
cryptsetup luksClose BAR

for the home

Using filesystem remotely

- scp
- sshfs

- rsync

- Unison

- syncthing
- git

- NFS

- OpenAFS

for the home

My storage use

- ssh, scp, sshfs as baseline
- manual syncing works fine for many cases (one master copy)

- rsync for bigger jobs
- photos, videos, user-level backups

- unison for more complex (bidirectional) syncing
- still need some higher-level policy to avoid crazy conflicts

- limited use of syncthing mainly for Android phones
- slurp photos and videos off phone
- dump reading material and music, videos onto phone
- hopefully can use unison soon.
- untrusted device: (semi-)public material only

r for the home

Deeper explorations

- udev rules

- tweaking was needed for communicating with BBB.
- quite handy for setting device permissions

- a lot seems to now be already set up

- sources of random data
- forinitializing disks before setting up encrypted partitions
- options
- “quality”
-+ speed

for the home

udev rules

- userspace rule-based system to manage device nodes in /dev

- event-conditions-actions rules
- event: device addition, removal, change (from kernel)

- e.g,a USB WiFi device detected.
- ACTION=="add"

- conditions: (key op value), ... [logically anded]
- eg, ATTRS{idVendor}=="01ac”, ATTRS{idProduct}=="b2d1"

- actions: (key assign value), ... [sequence of assignments]
- e.g, SYMLINK="/dev/usbwifi1

- all rules matching an event are executed
- event is not “consumed” by rule execution

udev rules files

- Files *.rules in

- /1ib/udev/rules.d/
- /run/udev/rules.d/
- /etc/udev/rules.d/

- Files from all three pooled and evaluated in lexical order

- Exact file-name matches: one from earlier directory ignored

for the home

udev rule matching

- Several match (condition) keys:
- ACTION, NAME, ATTR, ...
- and assignable (action) keys:

- NAME, SYMLINK, OWNER, MODE, ...
- shell-like globbing
-, 27, [afk], |

- devpath: device path
- ATTR v. ATTRS, etc.

- keys from external programs

- condition: PROGRAM, RESULT
- action: RUN{program}, RUN{builtin}

- IMPORT{program}, IMPORT{cmdline}, ...
- LABEL and GOTO
- string-substitutions

for the home

udev example: included rules file

/lib/udev/rules.d/73-usb-net-by-mac.rules

Use MAC based names for network interfaces which are directly or
indirectly on USB and have an universally administered (stable) MAC
address (second bit is 0). Don't do this when ifnames is disabled
via kernel command line or customizing/disabling 99-default.link (or
previously 80-net-setup-link.rules).

HoH B R B

IMPORT{cmdline}="net.ifnames"
ENV{net.ifnames}=="0", GOTO="usb_net_by_mac_end"

ACTION=="add", SUBSYSTEM=="net", SUBSYSTEMS=="usb", NAME=="", \
ATTR{address}=="?[014589cd]:*", \
TEST!="/etc/udev/rules.d/80-net-setup-link.rules", \
TEST!="/etc/systemd/network/99-default.link", \
IMPORT{builtin}="net_id", NAME="$env{ID_NET_NAME_MAC}"

LABEL="usb_net_by_mac_end"

udev example: modified setup for BBB

/etc/udev/rules.d/73-beaglebone.rules

ACTION=="add", SUBSYSTEM=="usb", ENV{DEVTYPE}=="usb_interface",
ATTRS{idVendor}=="1d6b", ATTRS{idProduct}=="0104", DRIVER=="",
RUN+="/sbin/modprobe -b, ftdi_sio"

ACTION=="add", SUBSYSTEM=="drivers",
ENV{DEVPATH}=="/bus/usb-serial/drivers/ftdi_sio",
ATTR{new_id}="1d6b 0104"

ACTION=="add", KERNEL=="ttyUSB*", ATTRS{interface}=="+BeagleBonex*",
ATTRS{bInterfaceNumber}=="00", SYMLINK+="beaglebone-jtag"

ACTION=="add", KERNEL=="ttyUSBx", ATTRS{interface}=="+BeagleBonex",
ATTRS{bInterfaceNumber}=="01", SYMLINK+="beaglebone-serial"

get ModemManager to ignore BeagleBoneBlack:
ATTRS{idVendor}=="1d6b", ATTRS{idProduct}=="0104",
ENV{ID_MM_DEVICE_IGNORE}="1"

Random data for disk initialization

- Write random data to disk before creating encrtypted filesystem
- Make cryptanalysis harder

- Large disks + slow source of random bits = trouble.

- Which source or random bits?

r for the home

/dev/urandomv. /dev/random

- From “Myths about /dev/urandom” Huhn, 2014:
[myth] /dev/urandom is a pseudo random number
generator, a PRNG, while /dev/random is a “true”
random number generator.
Fact: Both /dev/urandom and /dev/random are using
the exact same CSPRNG (a cryptographically secure
pseudorandom number generator). They only differ in
very few ways that have nothing to do with “true”
randomness.

- Can we verify?

for the home

Looking into /dev/[u]random

- Source of data? Let's look at the source:

sudo apt-get install linux-source

cd /usr/src

pv -cN rd < linux-source-4.9.tar.xz | xzcat | pv -cN xz | sudo tar
xf -

grep -rl --include=x.c -e '/dev/urandom' linux-source-4.9

From random.c Ts'o, 1999:

/* ... /dev/random is suitable for use when very high

quality randomness is desired (for example, for key generation or
one-time pads), as it will only return a maximum of the number of
bits of randomness (as estimated by the random number generator)
contained in the entropy pool.

The /dev/urandom device does not have this 1limit, and will return

as many bytes as are requested. As more and more random bytes are

requested without giving time for the entropy pool to recharge,

this will result in random numbers that are merely
cryptographically

* strong. For many applications, however, this is acceptable.

.ox/

L N R R

- Change in Linux kernel 4.8.

or ti

Faster random bits?

- /dev/urandom

dd if=/dev/urandom of=/dev/null bs=1024 count=1000000

- 1024000000 bytes (1.0 GB, 977 MiB) copied, 6.77982 s, 151 MB/s
- Were earlier implementations slower (~ 10 MB/s)?

- openssl

openssl enc -aes-256-ctr -pass pass:"$(dd,if=/dev/urandom bs=128,
count=1,2>/dev/nully, | base64)" -nosalt < /dev/zero | dd
of=/dev/null bs=1024 count=100000

- 1024000000 bytes (1.0 GB, 977 MiB) copied, 1.08417 s, 945 MB/s

for the home

- Setting up SoC devices has gotten a lot easier.
- There are still surprises.

- Many interesting detours

- Results:

- usable system
- new knowledge
- fun tinkering

r for the home

How well has it worked, technically?

- Using 3 wee servers for 10+ years.
- Hardware: Linksys NSLU2 slug
- Processor: XScale-IXP42x Family rev 1 (v5l)
- BogoMIPS : 266.24
- On 24x7; still going strong.
- Some tasks too taxing

- decoding FLAC audio
- video: none (OK)

- Moving to BeagleBone Black.

- aging current hardware (NSLU2)
- faster disk, network
- run more/heavier services

or the home

How well has it worked, in household?

- Stability is easy to appreciate
- Command line is a mixed bag

- power and convenience is appreciated
- Need for reminders

- cheat-sheets are great

- Tendency to “switch back to the norm”
- fallacy that non-libre must mean easier

r for the home

- A wee home-server: low-cost, high-fun
- Libre software makes it easier to

- acquire, learn, troubleshoot, contribute
- Software users ? software community

- Contact:
- Sudarshan S Chawathe
- http://chaw.eip10.org/
- chaw@eipl0.org.

S.S. Chawathe, A we er for the home

QR Code

awathe, A we rver for the home

References i

Huhn, T. (2014). Myths about /dev/urandom .
https://www.2uo.de/myths-about-urandom/. Updated November
2016.

Ts'o, T. (1999). random.c—a strong random number generator . Linux kernel
source code. Version 1.89.

https://www.2uo.de/myths-about-urandom/

	Appendix

